Reduction and regularization of the Kepler problem

J.C. (Jan-Cees) van der Meer (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
102 Downloads (Pure)

Samenvatting

The KS regularization connects the dynamics of the harmonic oscillator to the dynamics of bounded Kepler orbits. Using orbit space reduction, it can be shown that reduced harmonic oscillator orbits can be identified with re-parametrized Kepler orbits by factorizing the KS map as reduction mapping followed by a chart on the reduced phase space. In this note, we will show that also other regularization maps can be obtained this way. In particular, we will show how Moser’s regularization and Ligon–Schaaf regularization are related to KS-regularization. All regularizations are a result of choosing the right invariants to represent the reduced phase space, which is isomorphic to T+S3, and a chart on this reduced phase space. We show how this opens the way to directly reduce the KS transformed Kepler system and find other regularization maps that are valid for all values of the Keplerian energy similar to Ligon–Schaaf regularization.
Originele taal-2Engels
Artikelnummer32
Aantal pagina's19
TijdschriftCelestial Mechanics
Volume133
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 8 jul. 2021

Financiering

Parts of the results in this paper were presented by the author during the II Workshop on Hamiltonian Dynamical Systems and Celestial Mechanics, Jan.13-17, 2020, Universidad del Bío-Bío, Chile.

FinanciersFinanciernummer
Universidad del Bio-Bio

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Reduction and regularization of the Kepler problem'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit