Reducing dimensionality in multiple instance learning with a filter method

A. Zafra, M. Pechenizkiy, S. Ventura

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)


In this article, we describe a feature selection algorithm which can automatically find relevant features for multiple instance learning. Multiple instance learning is considered an extension of traditional supervised learning where each example is made up of several instances and there is no specific information about particular instance labels. In this scenario, traditional supervised learning can not be applied directly and it is necessary to design new techniques. Our approach is based on principles of the well-known Relief-F algorithm which is extended to select features in this new learning paradigm by modifying the distance, the difference function and computation of the weight of the features. Four different variants of this algorithm are proposed to evaluate their performance in this new learning framework. Experiment results using a representative number of different algorithms show that predictive accuracy improves significantly when a multiple instance learning classifier is learnt on the reduced data set.
Originele taal-2Engels
TitelHybrid Artificial Intelligence Systems (5th International Symposium, HAIS 2010, San Sebastián, Spain, June 23-25, 2010. Proceedings, Part II)
RedacteurenE. Corchado, M. Graña Romay, A. Manhaes Savio
Plaats van productieBerlin
ISBN van geprinte versie978-3-642-13802-7
StatusGepubliceerd - 2010

Publicatie series

NaamLecture Notes in Computer Science
ISSN van geprinte versie0302-9743

Vingerafdruk Duik in de onderzoeksthema's van 'Reducing dimensionality in multiple instance learning with a filter method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit