Recursive tilings and space-filling curves with little fragmentation

H.J. Haverkort

Onderzoeksoutput: Boek/rapportRapportAcademic

1 Downloads (Pure)

Samenvatting

This paper defines the Arrwwid number of a recursive tiling (or space-filling curve) as the smallest number w such that any ball Q can be covered by w tiles (or curve sections) with total volume O(vol(Q)). Recursive tilings and space-filling curves with low Arrwwid numbers can be applied to optimise disk, memory or server access patterns when processing sets of points in d-dimensional space. This paper presents recursive tilings and space-filling curves with optimal Arrwwid numbers. For d >= 3, we see that regular cube tilings and space-filling curves cannot have optimal Arrwwid number, and we see how to construct alternatives with better Arrwwid numbers.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's28
StatusGepubliceerd - 2010

Publicatie series

NaamarXiv.org [cs.CG]
Volume1002.1843

Vingerafdruk Duik in de onderzoeksthema's van 'Recursive tilings and space-filling curves with little fragmentation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit