Real-time semantic context labeling for image understanding

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

The use of context information in a scene is an important aid for full semantic scene understanding in security and surveillance applications. To this end, this paper presents an innovative semantic context-labeling algorithm for three context classes, trading-off quality and real-time execution. Our system consists of three consecutive stages: image segmentation, region-based feature extraction and classification. We propose the joint use of the features color in HSV space, texture from Gabor filters and spatial context, in combination with the Directional Nearest Neighbor (DNN) method for constructing the undirected graph for segmentation. Compared to recent literature, this combination is over 35 times faster and achieves a coverability rate that is 65% higher.
Originele taal-2Engels
TitelProceedings of the2015 IEEE International Conference on Image Processing (ICIP 2015), 27-30 September 2015, Quebec City, Canada
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3180-3184
ISBN van geprinte versie978-1-4799-8339-1
DOI's
StatusGepubliceerd - 2015
Evenement22nd IEEE International Conference on Image Processing (ICIP 2015) - Quebec, Canada
Duur: 27 sep. 201530 sep. 2015
Congresnummer: 22
http://www.icip2015.org/

Congres

Congres22nd IEEE International Conference on Image Processing (ICIP 2015)
Verkorte titelICIP 2015
Land/RegioCanada
StadQuebec
Periode27/09/1530/09/15
AnderIEEE International Conference on Image Processing (ICIP)
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Real-time semantic context labeling for image understanding'. Samen vormen ze een unieke vingerafdruk.

Citeer dit