TY - JOUR
T1 - Real-time integration of 3-D multimodality data in interventional neuroangiography
AU - Ruijters, D.
AU - Babic, D.
AU - Homan, R.
AU - Mielekamp, P.
AU - Haar Romenij, ter, B.M.
AU - Suetens, P.
PY - 2009
Y1 - 2009
N2 - We describe a novel approach to using soft-tissue data sets, such as computer tomography on magnetic resonance, in the minimally invasive image guidance of intra-arterial and intravenous endovascular devices in neuroangiography interventions. Minimally invasive x-ray angiography procedures rely on the navigation of endovascular devices, such as guide wires and catheters, through human vessels, using C-arm fluoroscopy. Although the bone structure may be visible and the injection of iodine contrast medium allows one to guide endovascular devices through the vasculature, the soft-tissue structures remain invisible in the fluoroscopic images. We intend to present a method for the combined visualization of soft-tissue data, a 3-D rotational angiography (3-DRA) reconstruction, and the live fluoroscopy data stream in a single fused image. Combining the fluoroscopic image with the 3-DRA vessel tree offers the advantage that endovascular devices can be located within the vasculature without additional contrast injection, while the position of the C-arm geometry can be altered freely. The additional visualization of the soft-tissue data adds contextual information to the position of endovascular devices. We address the clinical applications, the real-time aspects of the registration algorithms, and fast-fused visualization of the proposed method.
AB - We describe a novel approach to using soft-tissue data sets, such as computer tomography on magnetic resonance, in the minimally invasive image guidance of intra-arterial and intravenous endovascular devices in neuroangiography interventions. Minimally invasive x-ray angiography procedures rely on the navigation of endovascular devices, such as guide wires and catheters, through human vessels, using C-arm fluoroscopy. Although the bone structure may be visible and the injection of iodine contrast medium allows one to guide endovascular devices through the vasculature, the soft-tissue structures remain invisible in the fluoroscopic images. We intend to present a method for the combined visualization of soft-tissue data, a 3-D rotational angiography (3-DRA) reconstruction, and the live fluoroscopy data stream in a single fused image. Combining the fluoroscopic image with the 3-DRA vessel tree offers the advantage that endovascular devices can be located within the vasculature without additional contrast injection, while the position of the C-arm geometry can be altered freely. The additional visualization of the soft-tissue data adds contextual information to the position of endovascular devices. We address the clinical applications, the real-time aspects of the registration algorithms, and fast-fused visualization of the proposed method.
U2 - 10.1117/1.3222939
DO - 10.1117/1.3222939
M3 - Article
SN - 1017-9909
VL - 18
SP - 033014-1/14
JO - Journal of Electronic Imaging
JF - Journal of Electronic Imaging
IS - 3
ER -