Real-time Barrett's neoplasia characterization in NBI videos using an int8-based quantized neural network

Koen Kusters, Tim G.W. Boers, Jelmer B. Jukema, Martijn R. Jong, Kiki N. Fockens, Albert J. de Groof, Jacques J. Bergman, Fons van der Sommen (Begeleider), Peter H.N. de With (Begeleider)

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

10 Downloads (Pure)

Samenvatting

Computer-Aided Diagnosis (CADx) systems for characterization of Narrow-Band Imaging (NBI) videos of suspected lesions in Barrett’s Esophagus (BE) can assist endoscopists during endoscopic surveillance. The real clinical value and application of such CADx systems lies in real-time analysis of endoscopic videos inside the endoscopy suite, placing demands on robustness in decision making and insightful classification matching with the clinical opinions. In this paper, we propose a lightweight int8-based quantized neural network architecture supplemented with an efficient stability function on the output for real-time classification of NBI videos. The proposed int8-architecture has low-memory footprint (4.8 MB), enabling operation on a range of edge devices and even existing endoscopy equipment. Moreover, the stability function ensures robust inclusion of temporal information from the video to provide a continuously stable video classification. The algorithm is trained, validated and tested with a total of 3,799 images and 284 videos of in total 598 patients, collected from 7 international centers. Several stability functions are experimented with, some of them being clinically inspired by weighing low-confidence predictions. For the detection of early BE neoplasia, the proposed algorithm achieves a performance of 92.8% accuracy, 95.7% sensitivity, and 91.4% specificity, while only 5.6% of the videos are without a final video classification. This work shows a robust, lightweight and effective deep learning-based CADx system for accurate automated real-time endoscopic video analysis, suited for embedding in endoscopy clinical practice.
Originele taal-2Engels
TitelMedical Imaging 2023
SubtitelComputer-Aided Diagnosis
RedacteurenKhan M. Iftekharuddin, Weijie Chen
UitgeverijSPIE
Pagina's1-11
Aantal pagina's11
ISBN van elektronische versie9781510660359
DOI's
StatusGepubliceerd - 7 apr. 2023
EvenementSpie Medical Imaging 2023 - San Diego, Verenigde Staten van Amerika
Duur: 19 feb. 202324 feb. 2023

Publicatie series

NaamProceedings of SPIE
Volume12465

Congres

CongresSpie Medical Imaging 2023
Land/RegioVerenigde Staten van Amerika
StadSan Diego
Periode19/02/2324/02/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Real-time Barrett's neoplasia characterization in NBI videos using an int8-based quantized neural network'. Samen vormen ze een unieke vingerafdruk.

Citeer dit