Real-time audio processing for hearing aids using a model-based Bayesian inference framework

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


Development of hearing aid (HA) signal processing algorithms entails an iterative process between two design steps, namely algorithm development and the embedded implementation. Algorithm designers favor high-level programming languages for several reasons including higher productivity, code readability and, perhaps most importantly, availability of state-of-the-art signal processing frameworks that open new research directions. Embedded software, on the other hand, is preferably implemented using a low-level programming language to allow finer control of the hardware, an essential trait in real-time processing applications. In this paper we present a technique that allows deploying DSP algorithms written in Julia, a modern high-level programming language, on a real-time HA processing platform known as openMHA. We demonstrate this technique by using a model-based Bayesian inference framework to perform real-time audio processing.
Originele taal-2Engels
TitelProceedings of the 23rd International Workshop on Software and Compilers for Embedded Systems, SCOPES 2020
SubtitelSCOPES 2020
RedacteurenSander Stuijk
UitgeverijAssociation for Computing Machinery, Inc
Aantal pagina's4
ISBN van elektronische versie978-1-4503-7131-5
StatusGepubliceerd - 25 mei 2020


Duik in de onderzoeksthema's van 'Real-time audio processing for hearing aids using a model-based Bayesian inference framework'. Samen vormen ze een unieke vingerafdruk.

Citeer dit