Real-argument incomplete hankel functions: accurate and computationally efficient integral representations and their asymptotic approximants

Renato Cicchetti, Antonio Faraone, Gianni Orlandi, Diego Caratelli

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Novel accurate, computationally efficient integral representations of the real-argument incomplete Hankel functions of arbitrary order are presented, leading to a straightforward numerical implementation. These representations are shown to yield analytical approximants, expressed through known special functions, which are also accurate and valid for any arguments of the incomplete Hankel functions. Through these representations, the electromagnetic field distribution excited in planar and truncated cylindrical structures can be determined accurately and efficiently. Numerical results based on the exact and approximate representations are presented to demonstrate the effectiveness of the proposed integral representations in the analysis of the electromagnetic field distribution excited in complex structures.

Originele taal-2Engels
Artikelnummer7061465
Pagina's (van-tot)2751-2756
Aantal pagina's6
TijdschriftIEEE Transactions on Antennas and Propagation
Volume63
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 1 jun 2015

Vingerafdruk

Duik in de onderzoeksthema's van 'Real-argument incomplete hankel functions: accurate and computationally efficient integral representations and their asymptotic approximants'. Samen vormen ze een unieke vingerafdruk.

Citeer dit