Rank-Metric Codes, Generalized Binomial Moments and their Zeta Functions

Eimear Byrne, Giuseppe Cotardo (Corresponding author), Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

6 Citaten (Scopus)

Samenvatting

In this paper we introduce a new class of extremal codes, namely the i-BMD codes. We show that for this family several of the invariants are determined by the parameters of the underlying code. We refine and extend the notion of an i-MRD code and show that the i-BMD codes form a proper subclass of the i-MRD codes. Using the class of i-BMD codes we then obtain a relation between the generalized rank weight enumerator and its corresponding generalized zeta function. We also establish a MacWilliams identity for generalized rank weight distributions.

Originele taal-2Engels
Pagina's (van-tot)92-128
Aantal pagina's37
TijdschriftLinear Algebra and Its Applications
Volume604
DOI's
StatusGepubliceerd - 1 nov. 2020

Financiering

The author was supported by the Irish Research Council, grant n. GOIPG/2018/2534.The author was supported by the Marie Curie Research Grants Scheme, grant n. 740880.

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme740880
H2020 Marie Skłodowska-Curie Actions
Irish Research CouncilGOIPG/2018/2534

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Rank-Metric Codes, Generalized Binomial Moments and their Zeta Functions'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit