Range-clustering queries

M. Abrahamsen, M.T. de Berg, K.A. Buchin, M. Mehr, A.D. Mehrabi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

19 Downloads (Pure)

Samenvatting

In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute an optimal k -clustering for S∖Q . We obtain the following results. We present a general method to compute a (1+ϵ) -approximation to a range-clustering query, where ϵ>0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k -center clustering in any L p -metric and a variant of k -center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. We extend our method to deal with capacitated k -clustering problems, where each of the clusters should not contain more than a given number of points. For the special cases of rectilinear k -center clustering in R 1 , and in R 2 for k=2 or 3, we present data structures that answer range-clustering queries exactly.
Originele taal-2Engels
Artikelnummer1705.06242
Aantal pagina's23
TijdschriftarXiv
Nummer van het tijdschrift1705.06242
StatusGepubliceerd - 2017

Vingerafdruk Duik in de onderzoeksthema's van 'Range-clustering queries'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Abrahamsen, M., de Berg, M. T., Buchin, K. A., Mehr, M., & Mehrabi, A. D. (2017). Range-clustering queries. arXiv, (1705.06242), [1705.06242]. https://arxiv.org/abs/1705.06242