Range-clustering queries

M. Abrahamsen, M.T. de Berg, K.A. Buchin, M. Mehr, A.D. Mehrabi

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

10 Citaten (Scopus)


In a geometric k-clustering problem the goal is to partition a set of points in R^d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S: given a query box Q and an integer k > 2, compute an optimal k-clustering for the subset of S inside Q. We obtain the following results. * We present a general method to compute a (1+epsilon)-approximation to a range-clustering query, where epsilon>0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k-center clustering in any Lp-metric and a variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. * We extend our method to deal with capacitated k-clustering problems, where each of the clusters should not contain more than a given number of points. * For the special cases of rectilinear k-center clustering in R^1, and in R^2 for k = 2 or 3, we present data structures that answer range-clustering queries exactly.
Originele taal-2Engels
Titel33rd International Symposium on Computational Geometry (SoCG 2017), 14-17 July 2017, Brisbane, Australia
Plaats van productieDagstuhl
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's16
ISBN van geprinte versie978-3-95977-038-5
StatusGepubliceerd - 2017

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)

Vingerafdruk Duik in de onderzoeksthema's van 'Range-clustering queries'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Abrahamsen, M., de Berg, M. T., Buchin, K. A., Mehr, M., & Mehrabi, A. D. (2017). Range-clustering queries. In 33rd International Symposium on Computational Geometry (SoCG 2017), 14-17 July 2017, Brisbane, Australia (blz. 1-16). [5] (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.