Random fluid limit of an overloaded polling model

M. Remerova, S.G. Foss, B. Zwart

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

In the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches between the queues infinitely many times in any finite time interval causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero. Moreover, the fluid limit is random. In addition, we suggest a method that establishes finiteness of moments of the busy period in an M/G/1 queue. Keywords: Cyclic polling; overload; random fluid limit; branching process; multi-stage gated discipline; busy period moment
Originele taal-2Engels
Pagina's (van-tot)76-101
TijdschriftAdvances in Applied Probability
Volume46
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2014

Vingerafdruk

Duik in de onderzoeksthema's van 'Random fluid limit of an overloaded polling model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit