Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox

Dario A. Bini, Stefano Massei, Leonardo Robol (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

20 Citaten (Scopus)

Samenvatting

A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the kind A= T(a) + E where T(a)=(aj−i)i,j∈ℤ+, E=(ei,j)i,j∈ℤ+ is compact and the norms∥a∥W=∑i∈ℤ|ai| and ∥ E∥ 2 are finite. These properties allow to approximate any QT matrix, within any given precision, by means of a finite number of parameters. QT matrices, equipped with the norm∥A∥QT=α∥a∥W+∥E∥2, for α=(1+5)/2, are a Banach algebra with the standard arithmetic operations. We provide an algorithmic description of these operations on the finite parametrization of QT matrices, and we develop a MATLAB toolbox implementing them in a transparent way. The toolbox is then extended to perform arithmetic operations on matrices of finite size that have a Toeplitz plus low-rank structure. This enables the development of algorithms for Toeplitz and quasi-Toeplitz matrices whose cost does not necessarily increase with the dimension of the problem. Some examples of applications to computing matrix functions and to solving matrix equations are presented, and confirm the effectiveness of the approach.

Originele taal-2Engels
Pagina's (van-tot)741-769
Aantal pagina's29
TijdschriftNumerical Algorithms
Volume81
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jun. 2019
Extern gepubliceerdJa

Bibliografische nota

Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Financiering

This work has been supported by the GNCS/INdAM project 2018 “Tecniche innovative per problemi di algebra lineare”. The authors are members of the research group GNCS.

Vingerafdruk

Duik in de onderzoeksthema's van 'Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox'. Samen vormen ze een unieke vingerafdruk.

Citeer dit