TY - GEN
T1 - Quantum readout of Physical Unclonable Functions
AU - Skoric, B.
PY - 2010
Y1 - 2010
N2 - Physical Unclonable Functions (PUFs) are physical structures that are hard to clone and have a unique challenge-response behaviour. In this paper we propose a new security primitive, the quantum-readout PUF (QR-PUF): a classical PUF which is challenged using a quantum state, and whose response is also a quantum state. By the no-cloning property of unknown quantum states, attackers cannot intercept challenges or responses without noticeably disturbing the readout process. Thus, a verifier who sends quantum states as challenges and receives the correct quantum states back can be certain that he is probing a specific QR-PUF without disturbances, even in the QR-PUF is far away ‘in the field’ and under hostile control. For PUFs whose information content is not exceedingly large, all currently known PUF-based authentication and anti-counterfeiting schemes require trusted readout devices in the field. Our quantum readout scheme has no such requirement.
We show how the QR-PUF authentication can be interwoven with Quantum Key Exchange (QKE), leading to an authenticated QKE protocol between two parties with the special property that it requires no a priori secret shared by the two parties, and that the quantum channel is the authenticated channel, allowing for an unauthenticated classical channel.
AB - Physical Unclonable Functions (PUFs) are physical structures that are hard to clone and have a unique challenge-response behaviour. In this paper we propose a new security primitive, the quantum-readout PUF (QR-PUF): a classical PUF which is challenged using a quantum state, and whose response is also a quantum state. By the no-cloning property of unknown quantum states, attackers cannot intercept challenges or responses without noticeably disturbing the readout process. Thus, a verifier who sends quantum states as challenges and receives the correct quantum states back can be certain that he is probing a specific QR-PUF without disturbances, even in the QR-PUF is far away ‘in the field’ and under hostile control. For PUFs whose information content is not exceedingly large, all currently known PUF-based authentication and anti-counterfeiting schemes require trusted readout devices in the field. Our quantum readout scheme has no such requirement.
We show how the QR-PUF authentication can be interwoven with Quantum Key Exchange (QKE), leading to an authenticated QKE protocol between two parties with the special property that it requires no a priori secret shared by the two parties, and that the quantum channel is the authenticated channel, allowing for an unauthenticated classical channel.
U2 - 10.1007/978-3-642-12678-9_22
DO - 10.1007/978-3-642-12678-9_22
M3 - Conference contribution
SN - 978-3-642-12677-2
T3 - Lecture Notes in Computer Science
SP - 369
EP - 386
BT - Progress in Cryptology - AfricaCrypt 2010 (Third International Conference on Cryptology in Africa, Stellenbosch, South Africa, May 3-6, 2010. Proceedings)
A2 - Bernstein, D.J.
A2 - Lange, T.
PB - Springer
CY - Berlin
ER -