Quantifying and Learning Linear Symmetry-Based Disentanglement

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

8 Citaten (Scopus)

Samenvatting

The definition of Linear Symmetry-Based Disentanglement (LSBD) formalizes the notion of linearly disentangled representations, but there is currently no metric to quantify LSBD. Such a metric is crucial to evaluate LSBD methods and to compare to previous understandings of disentanglement. We propose D_LSBD, a mathematically sound metric to quantify LSBD, and provide a practical implementation for SO(2) groups. Furthermore, from this metric we derive LSBD-VAE, a semi-supervised method to learn LSBD representations. We demonstrate the utility of our metric by showing that (1) common VAE-based disentanglement methods don't learn LSBD representations, (2) LSBD-VAE, as well as other recent methods, can learn LSBD representations needing only limited supervision on transformations, and (3) various desirable properties expressed by existing disentanglement metrics are also achieved by LSBD representations.
Originele taal-2Engels
TitelProceedings of the 39th International Conference on Machine Learning
UitgeverijPMLR
Pagina's21584-21608
Aantal pagina's25
StatusGepubliceerd - 17 jul. 2022
Evenement39th International Conference on Machine Learning, ICML 2022 - Baltimore, Verenigde Staten van Amerika
Duur: 17 jul. 202223 jul. 2022
Congresnummer: 39
https://icml.cc/

Publicatie series

NaamProceedings of Machine Learning Research

Congres

Congres39th International Conference on Machine Learning, ICML 2022
Verkorte titelICML
Land/RegioVerenigde Staten van Amerika
StadBaltimore
Periode17/07/2223/07/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Quantifying and Learning Linear Symmetry-Based Disentanglement'. Samen vormen ze een unieke vingerafdruk.

Citeer dit