QMTS: Fixed-point Quantization for Multiple-timescale Spiking Neural Networks

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Downloads (Pure)

Samenvatting

Spiking Neural Networks (SNNs) represent a promising solution for streaming applications at the edge that have strict performance and energy requirements. However, implementing SNNs efficiently at the edge requires model quantization to reduce memory and compute requirements. In this paper, we provide methods to quantize a prominent neuron model for temporally rich problems, the parameterized Adaptive Leaky-Integrate-and-Fire (p-ALIF). p-ALIF neurons combine the computational simplicity of Integrate-and-Fire neurons, with accurate learning at multiple timescales, activation sparsity, and increased dynamic range, due to adaptation and heterogeneity. p-ALIF neurons have shown state-of-the-art (SoTA) performance on temporal tasks such as speech recognition and health monitoring. Our method, QMTS, separates SNN quantization into two stages, allowing one to explore different quantization levels efficiently. QMTS search heuristics are tailored for leaky heterogeneous neurons. We demonstrate QMTS on several temporal benchmarks, showing up to 40x memory reduction and 4x sparser synaptic operations with little accuracy loss, compared to 32-bit float.

Originele taal-2Engels
TitelArtificial Neural Networks and Machine Learning – ICANN 2023
Subtitel32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part I
RedacteurenLazaros Iliadis, Antonios Papaleonidas, Plamen Angelov, Chrisina Jayne
Plaats van productieCham
UitgeverijSpringer
Pagina's407-419
Aantal pagina's13
ISBN van elektronische versie978-3-031-44207-0
ISBN van geprinte versie978-3-031-44206-3
DOI's
StatusGepubliceerd - 22 sep. 2023
Evenement32nd International Conference on Artificial Neural Networks, ICANN 2023 - Heraklion, Griekenland
Duur: 26 sep. 202329 sep. 2023

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume14254
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres32nd International Conference on Artificial Neural Networks, ICANN 2023
Land/RegioGriekenland
StadHeraklion
Periode26/09/2329/09/23

Financiering

Acknowledgement. This work has been funded by the Dutch Organization for Scientific Research (NWO) as part of P16-25 eDL project 7.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Vingerafdruk

    Duik in de onderzoeksthema's van 'QMTS: Fixed-point Quantization for Multiple-timescale Spiking Neural Networks'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit