Process theory for supervisory control of stochastic systems with data

J. Markovski

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    2 Citaten (Scopus)

    Samenvatting

    We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a theoretical basis for a model-based systems engineering framework that is based on state-of-the-art tools: we employ Supremica for supervisor synthesis and MRMC for stochastic model checking and performance evaluation. We present the process theory and discuss the implementation of the framework.
    Originele taal-2Engels
    TitelProceedings of the 2011 IEEE 17th Conference on Emerging Technologies & Factory Automation (ETFA)
    Plaats van productiePiscataway
    UitgeverijInstitute of Electrical and Electronics Engineers
    Aantal pagina's4
    ISBN van elektronische versie978-1-4673-4737-2
    ISBN van geprinte versie978-1-4673-4736-5
    DOI's
    StatusGepubliceerd - 2012
    Evenement17th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2012) - Krakow, Polen
    Duur: 17 sep. 201221 sep. 2012
    Congresnummer: 17

    Congres

    Congres17th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2012)
    Verkorte titelETFA 2012
    Land/RegioPolen
    StadKrakow
    Periode17/09/1221/09/12
    Ander17th IEEE International Conference on Emerging Technologies and Factory Automation

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Process theory for supervisory control of stochastic systems with data'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit