Process Mining over Multiple Behavioral Dimensions with Event Knowledge Graphs

Dirk Fahland (Corresponderende auteur)

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

45 Citaten (Scopus)

Samenvatting

Classical process mining relies on the notion of a unique case identifier, which is used to partition event data into independent sequences of events. In this chapter, we study the shortcomings of this approach for event data over multiple entities. We introduce event knowledge graphs as data structure that allows to naturally model behavior over multiple entities as a network of events. We explore how to construct, query, and aggregate event knowledge graphs to get insights into complex behaviors. We will ultimately show that event knowledge graphs are a very versatile tool that opens the door to process mining analyses in multiple behavioral dimensions at once.
Originele taal-2Engels
TitelProcess Mining Handbook
RedacteurenWil M.P. van der Aalst, Josep Carmona
UitgeverijSpringer
Pagina's274-319
Aantal pagina's46
ISBN van elektronische versie978-3-031-08848-3
ISBN van geprinte versie978-3-031-08847-6
DOI's
StatusGepubliceerd - 27 jun. 2022

Publicatie series

NaamLecture Notes in Business Information Processing
Volume448
ISSN van geprinte versie1865-1348
ISSN van elektronische versie1865-1356

Vingerafdruk

Duik in de onderzoeksthema's van 'Process Mining over Multiple Behavioral Dimensions with Event Knowledge Graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit