Probabilistic Integral Circuits

Gennaro Gala, Cassio de Campos, Robert Peharz, Antonio Vergari, Erik Quaeghebeur

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Continuous latent variables (LVs) are a key ingredient of many generative models, as they allow modelling expressive mixtures with an uncountable number of components. In contrast, probabilistic circuits (PCs) are hierarchical discrete mixtures represented as computational graphs composed of input, sum and product units. Unlike continuous LV models, PCs provide tractable inference but are limited to discrete LVs with categorical (i.e. unordered) states. We bridge these model classes by introducing probabilistic integral circuits (PICs), a new language of computational graphs that extends PCs with integral units representing continuous LVs. In the first place, PICs are symbolic computational graphs and are fully tractable in simple cases where analytical integration is possible. In practice, we parameterise PICs with lightweight neural nets delivering an intractable hierarchical continuous mixture that can be approximated arbitrarily well with large PCs using numerical quadrature. On several distribution estimation benchmarks, we show that such PIC-approximating PCs systematically outperform PCs commonly learned via expectation-maximization or SGD.

Originele taal-2Engels
TitelProceedings of The 27th International Conference on Artificial Intelligence and Statistics
Pagina's2143-2151
Aantal pagina's9
StatusGepubliceerd - 2024
Evenement27th International Conference on Artificial Intelligence and Statistics, AISTATS 2024 - Valencia, Spanje
Duur: 2 mei 20244 mei 2024

Publicatie series

NaamProceedings of Machine Learning Research
UitgeverijPMLR
Volume238

Congres

Congres27th International Conference on Artificial Intelligence and Statistics, AISTATS 2024
Land/RegioSpanje
StadValencia
Periode2/05/244/05/24

Bibliografische nota

Publisher Copyright:
Copyright 2024 by the author(s).

Vingerafdruk

Duik in de onderzoeksthema's van 'Probabilistic Integral Circuits'. Samen vormen ze een unieke vingerafdruk.

Citeer dit