Samenvatting
The current paradigm in privacy protection in street-view images is to detect and blur sensitive information. In this paper, we propose a framework that is an alternative to blurring, which automatically removes and inpaints moving objects (e.g. pedestrians, vehicles) in street-view imagery. We propose a novel moving object segmentation algorithm exploiting consistencies in depth across multiple street-view images that are later combined with the results of a segmentation network. The detected moving objects are removed and inpainted with information from other views, to obtain a realistic output image such that the moving object is not visible anymore. We evaluate our results on a dataset of 1000 images to obtain a peak noise-to-signal ratio (PSNR) and L 1 loss of 27.2 dB and 2.5%, respectively. To assess overall quality, we also report the results of a survey conducted on 35 professionals, asked to visually inspect the images whether object removal and inpainting had taken place. The inpainting dataset will be made publicly available for scientific benchmarking purposes at https://research.cyclomedia.com/.
Originele taal-2 | Engels |
---|---|
Titel | 13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019) |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 10573-10582 |
Aantal pagina's | 10 |
ISBN van elektronische versie | 978-1-7281-3293-8 |
DOI's | |
Status | Gepubliceerd - jun. 2019 |
Evenement | 13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019) - Long Beach, Verenigde Staten van Amerika Duur: 16 jun. 2019 → 20 jun. 2019 http://cvpr2019.thecvf.com/ |
Congres
Congres | 13th IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR2019) |
---|---|
Verkorte titel | CVPR 2019 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Long Beach |
Periode | 16/06/19 → 20/06/19 |
Internet adres |