Prediction and modeling with partial dependencies

T.J. Tjalkens

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
164 Downloads (Pure)


The author consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A Bayesian approach requires us to estimate the probability of a feature vector given the class of the object. Due to the size of the feature vector this is an unfeasible task. A useful approach is to split the feature space into several (conditionally) independent subspaces. This results in a new problem, namely how to find the ldquobestrdquo subdivision. In this paper the author consider a weighing approach that will perform (asymptotically) as good as the best subdivision and still has a manageable complexity.
Originele taal-2Engels
TitelInformation Theory and Applications Workshop, 2008 , 3rd ,27 January -1 February 2008, San Diego, U.S.A.
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
ISBN van geprinte versie978-1-4244-2670-6
StatusGepubliceerd - 2008


Duik in de onderzoeksthema's van 'Prediction and modeling with partial dependencies'. Samen vormen ze een unieke vingerafdruk.

Citeer dit