Predicting player type in social network games

Dereck Toker, Ben Steichen, Max Birk

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

This paper presents preliminary work towards personalizing and recommending social network games based on a user’s player type. In particular, we present research aimed at supporting such personalization through the prediction of player type from automatically collected user data.
We first provide a brief overview of player types, and then outline several data sources that we gathered from a popular social network game to study the feasibility of player type predictions. Finally, we perform a preliminary analysis using one of these sources, namely music interests.
Originele taal-2Niet gedefinieerd
TitelProceedings of UMAP 2014 posters, demonstrations and late-breaking results
RedacteurenI. Cantador, Min Chi
UitgeverijCEUR-WS.org
Pagina's37-40
Aantal pagina's4
StatusGepubliceerd - 2014
Extern gepubliceerdJa

Publicatie series

NaamCEUR-Workshop Proceedings
Volume1181
ISSN van geprinte versie1613-0073

Citeer dit