Positive and negative square energies of graphs

Aida Abiad, Leonardo De Lima (Corresponding author), Dheer Noal Desai, Krystal Guo, Leslie Hogben, José Madrid

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
51 Downloads (Pure)

Samenvatting

The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. Let s+ (G), s (G) denote the sum of the squares of the positive and negative eigenvalues of G, respectively. It was conjectured by [Elphick, Farber, Goldberg, Wocjan, Discrete Math. (2016)] that if G is a connected graph of order n, then s+ (G) ≥ n − 1 and s (G) ≥ n − 1. In this paper, we show partial results towards this conjecture. In particular, numerous structural results that may help in proving the conjecture are derived, including the effect of various graph operations. These are then used to establish the conjecture for several graph classes, including graphs with certain fraction of positive eigenvalues and unicyclic graphs.

Originele taal-2Engels
Pagina's (van-tot)307-326
Aantal pagina's20
TijdschriftElectronic Journal of Linear Algebra
Volume39
DOI's
StatusGepubliceerd - mei 2023

Financiering

Acknowledgment. This project started and was made possible by Spectral Graph and Hypergraph Theory: Connections & Applications, December 6-10, 2021, a workshop of the American Institute of Math- ematics with support from the US National Science Foundation. The authors thank AIM and also thank Sam Spiro for many fruitful discussions. We thank Clive Elphick for bringing Conjecture 1.1 to Aida Abiad’s attention and also for suggesting Example 4.2. We thank the reviewer for helpful comments and examples that have improved the paper. Aida Abiad is partially supported by the Dutch Research Council through the grant VI.Vidi.213.085 and by the Research Foundation Flanders through the grant 1285921N. Leonardo de Lima is partially supported by CNPq grant 315739/2021-5.

FinanciersFinanciernummer
American Institute of Mathematics
National Science Foundation(NSF)
Fonds Wetenschappelijk Onderzoek1285921N
Nederlandse Organisatie voor Wetenschappelijk OnderzoekVI.Vidi.213.085
Conselho Nacional de Desenvolvimento Científico e Tecnológico315739/2021-5

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Positive and negative square energies of graphs'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit