Portfolio decision of short-term electricity forecasted prices through stochastic programming

Augustin A. Sánchez de la Nieta Lopez, Virginia González, Javier Contreras

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

17 Citaten (Scopus)
55 Downloads (Pure)

Samenvatting

Deregulated electricity markets encourage firms to compete, making the development of renewable energy easier. An ordinary parameter of electricity markets is the electricity market price, mainly the day-ahead electricity market price. This paper describes a new approach to forecast day-ahead electricity market prices, whose methodology is divided into two parts as: (i) forecasting of the electricity price through autoregressive integrated moving average (ARIMA) models; and (ii) construction of a portfolio of ARIMA models per hour using stochastic programming. A stochastic programming model is used to forecast, allowing many input data, where filtering is needed. A case study to evaluate forecasts for the next 24 h and the portfolio generated by way of stochastic programming are presented for a specific day-ahead electricity market. The case study spans four weeks of each one of the years 2014, 2015 and 2016 using a specific pre-treatment of input data of the stochastic programming (SP) model. In addition, the results are discussed, and the conclusions are drawn.

Originele taal-2Engels
Artikelnummer1069
Aantal pagina's19
TijdschriftEnergies
Volume9
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - 1 dec 2016
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Portfolio decision of short-term electricity forecasted prices through stochastic programming'. Samen vormen ze een unieke vingerafdruk.

Citeer dit