Polynomials and tensors of bounded strength

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

Notions of rank abound in the literature on tensor decomposition. We prove that strength, recently introduced for homogeneous polynomials by Ananyan-Hochster in their proof of Stillman's conjecture and generalized here to other tensors, is universal among these ranks in the following sense: any non-trivial Zariski-closed condition on tensors that is functorial in the underlying vector space implies bounded strength. This generalizes a theorem by Derksen-Eggermont-Snowden on cubic polynomials, as well as a theorem by Kazhdan-Ziegler which says that a polynomial all of whose directional derivatives have bounded strength must itself have bounded strength.

Originele taal-2Engels
Artikelnummer1850062
Aantal pagina's19
TijdschriftCommunications in Contemporary Mathematics
Volume21
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 1 nov 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Polynomials and tensors of bounded strength'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit