TY - JOUR
T1 - Polymorphism in the assembly of phase-segregated block molecules
T2 - pathway control to 1D and 2D nanostructures
AU - Lamers, Brigitte A.G.
AU - Graf, Robert
AU - de Waal, Bas F.M.
AU - Vantomme, Ghislaine
AU - Palmans, Anja R.A.
AU - Meijer, E.W.
PY - 2019/9/25
Y1 - 2019/9/25
N2 - Nanomaterials with highly ordered, one- or two-dimensional molecular morphologies have promising properties for adaptive materials. Here, we present the synthesis and structural characterization of dinitrohydrazone (hydz) functionalized oligodimethylsiloxanes (oDMSs) of discrete length, which form both 1- and 2D nanostructures by precisely controlling composition and temperature. The morphologies are highly ordered due to the discrete nature of the siloxane oligomers. Columnar, 1D structures are formed from the melt within a few seconds as a result of phase segregation in combination with π-π stacking of the hydrazones. By tuning the length of the siloxane, the synergy between these interactions is observed which results in a highly temperature sensitive material. Macroscopically, this gives a material that switches reversibly and fast between an ordered, solid and a disordered, liquid state at almost equal temperatures. Ordered, 2D lamellar structures are formed under thermodynamic control by cold crystallization of the hydrazones in the amorphous siloxane bulk via a slow process. We elucidate the 1- and 2D morphologies from the nanometer to molecular level by the combined use of solid state NMR and X-ray scattering. The exact packing of the hydrazone rods within the cylinders and lamellae surrounded the liquid-like siloxane matrix is clarified. These results demonstrate that controlling the assembly pathway in the bulk and with that, tuning the nanostructure dimensions and domain spacings, material properties are altered for applications in nanotechnology or thermoresponsive materials.
AB - Nanomaterials with highly ordered, one- or two-dimensional molecular morphologies have promising properties for adaptive materials. Here, we present the synthesis and structural characterization of dinitrohydrazone (hydz) functionalized oligodimethylsiloxanes (oDMSs) of discrete length, which form both 1- and 2D nanostructures by precisely controlling composition and temperature. The morphologies are highly ordered due to the discrete nature of the siloxane oligomers. Columnar, 1D structures are formed from the melt within a few seconds as a result of phase segregation in combination with π-π stacking of the hydrazones. By tuning the length of the siloxane, the synergy between these interactions is observed which results in a highly temperature sensitive material. Macroscopically, this gives a material that switches reversibly and fast between an ordered, solid and a disordered, liquid state at almost equal temperatures. Ordered, 2D lamellar structures are formed under thermodynamic control by cold crystallization of the hydrazones in the amorphous siloxane bulk via a slow process. We elucidate the 1- and 2D morphologies from the nanometer to molecular level by the combined use of solid state NMR and X-ray scattering. The exact packing of the hydrazone rods within the cylinders and lamellae surrounded the liquid-like siloxane matrix is clarified. These results demonstrate that controlling the assembly pathway in the bulk and with that, tuning the nanostructure dimensions and domain spacings, material properties are altered for applications in nanotechnology or thermoresponsive materials.
UR - http://www.scopus.com/inward/record.url?scp=85072628316&partnerID=8YFLogxK
U2 - 10.1021/jacs.9b08733
DO - 10.1021/jacs.9b08733
M3 - Article
C2 - 31483637
AN - SCOPUS:85072628316
SN - 0002-7863
VL - 141
SP - 15456
EP - 15463
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 38
ER -