Planar graph coloring with forbidden subgraphs : why trees and paths are dangerous

H.J. Broersma, F.V. Fomin, J. Kratochvil, G.J. Woeginger

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem. We present a complete picture for the case with a single forbidden connected (induced or non-induced) subgraph. The 2-coloring problem is NP-hard if the forbidden subgraph is a tree with at least two edges, and it is polynomially solvable in all other cases. The 3-coloring problem is NP-hard if the forbidden subgraph is a path, and it is polynomially solvable in all other cases. We also derive results for several forbidden sets of cycles.
Originele taal-2Engels
TitelAlgorithm Theory - SWAT 2002 (Proceedings of the 8th Scandinavian Workshop on Algorithm Theory, Turku, Finland, July 3-5, 2002)
RedacteurenM. Penttonen, E.M. Schmidt
Plaats van productieBerlin
UitgeverijSpringer
Pagina's160-169
ISBN van geprinte versie3-540-43866-1
DOI's
StatusGepubliceerd - 2002

Publicatie series

NaamLecture Notes in Computer Science
Volume2368
ISSN van geprinte versie0302-9743

Vingerafdruk

Duik in de onderzoeksthema's van 'Planar graph coloring with forbidden subgraphs : why trees and paths are dangerous'. Samen vormen ze een unieke vingerafdruk.

Citeer dit