Placing your coins on a shelf

Helmut Alt, Kevin A. Buchin, Steven Chaplick, Otfried Cheong, Philipp Kindermann, Christian Knauer, Fabian Stehn

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

12 Downloads (Pure)

Samenvatting

We consider the problem of packing a family of disks ``on a shelf,'' that is, such that each disk touches the x-axis from above and such that no two disks overlap. We study the problem of minimizing the distance between the leftmost point and the rightmost point of any disk in such a packing. We show how to approximate this problem within a factor of 4/3 in O(n log n) time. We further provide an O(n log n)-time exact algorithm for a special case which includes inputs where the ratio between the largest radius and the smallest radius is less than four. On the negative side, we prove that the problem is NP-hard even when the ratio between the largest radius and the smallest radius is at most 36.
Originele taal-2Engels
Pagina's (van-tot)312-327
TijdschriftJournal of Computational Geometry
Volume9
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Placing your coins on a shelf'. Samen vormen ze een unieke vingerafdruk.

Citeer dit