TY - JOUR
T1 - Physicochemical properties of fatty acid based ionic liquids
AU - Alves da Rocha, M.
AU - van den Bruinhorst, A.
AU - Schröer, W.
AU - Rathke, B.
AU - Kroon, M.C.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - In this work a series of fatty acid based ionic liquids has been synthesized and characterized. Densities and viscosities at different temperatures have been measured in the temperature range from (293.15 to 363.15) K. The thermal operating window and thermal phase behavior have been evaluated. The effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. It has been observed that the density (T = 298.15 K) decreases with the following sequence: methyltrioctylammonium 4-ethyloctanoate > methyltrioctylammonium oleate > tetrahexylammonium oleate > tetraoctylammonium oleate, with no detectable dependency of the thermal expansion coefficients on the total number of carbons in the ionic liquid. An almost linear correlation between the molar volumes and the total number of carbons of the alkanes together with the studied ionic liquids was found. The experimental viscosity data were correlated using the Vogel-Fulcher-Tammann (VFT) equation, where a maximum relative deviation of 1.4% was achieved. The ionic liquid with branched alkyl chains on the anion presents the highest viscosity, and methyltrioctylammonium oleate has the highest viscosity compared to the rest of the oleate based ionic liquids. The short and long-term stability were evaluated for all ionic liquids, their long-term decomposition temperatures were found to be significantly lower than their short-term decomposition temperatures. From the long-term thermal analysis was concluded that the highest temperature at which these ionic liquids can be kept is 363 K. In addition, the thermal behavior, glass transition temperature, crystallization behavior and melting temperatures of the studied ionic liquids are presented.
AB - In this work a series of fatty acid based ionic liquids has been synthesized and characterized. Densities and viscosities at different temperatures have been measured in the temperature range from (293.15 to 363.15) K. The thermal operating window and thermal phase behavior have been evaluated. The effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. It has been observed that the density (T = 298.15 K) decreases with the following sequence: methyltrioctylammonium 4-ethyloctanoate > methyltrioctylammonium oleate > tetrahexylammonium oleate > tetraoctylammonium oleate, with no detectable dependency of the thermal expansion coefficients on the total number of carbons in the ionic liquid. An almost linear correlation between the molar volumes and the total number of carbons of the alkanes together with the studied ionic liquids was found. The experimental viscosity data were correlated using the Vogel-Fulcher-Tammann (VFT) equation, where a maximum relative deviation of 1.4% was achieved. The ionic liquid with branched alkyl chains on the anion presents the highest viscosity, and methyltrioctylammonium oleate has the highest viscosity compared to the rest of the oleate based ionic liquids. The short and long-term stability were evaluated for all ionic liquids, their long-term decomposition temperatures were found to be significantly lower than their short-term decomposition temperatures. From the long-term thermal analysis was concluded that the highest temperature at which these ionic liquids can be kept is 363 K. In addition, the thermal behavior, glass transition temperature, crystallization behavior and melting temperatures of the studied ionic liquids are presented.
KW - Density
KW - Fatty acid
KW - Ionic liquids
KW - Thermal phase behavior
KW - Thermogravimetric analysis
KW - Viscosity
UR - http://www.scopus.com/inward/record.url?scp=84965167348&partnerID=8YFLogxK
U2 - 10.1016/j.jct.2016.04.021
DO - 10.1016/j.jct.2016.04.021
M3 - Article
AN - SCOPUS:84965167348
SN - 0021-9614
VL - 100
SP - 156
EP - 164
JO - The Journal of Chemical Thermodynamics
JF - The Journal of Chemical Thermodynamics
ER -