Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions

Lei Yi, Cheng Wang, T.P.A. van Vuren, Detlef Lohse, Frédéric Risso, Federico Toschi, Chao Sun (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

13 Citaten (Scopus)
174 Downloads (Pure)

Samenvatting

By varying the oil volume fraction, the microscopic droplet size and the macroscopic rheology of emulsions are investigated in a Taylor–Couette turbulent shear flow. Although here oil and water in the emulsions have almost the same physical properties (density and viscosity), unexpectedly, we find that oil-in-water (O/W) and water-in-oil (W/O) emulsions have very distinct hydrodynamic behaviours, i.e. the system is clearly asymmetric. By looking at the micro-scales, the average droplet diameter hardly changes with the oil volume fraction for O/W or for W/O. However, for W/O it is about 50 % larger than that of O/W. At the macro-scales, the effective viscosity of O/W is higher when compared to that of W/O. These asymmetric behaviours are expected to be caused by the presence of surface-active contaminants from the walls of the system. By introducing an oil-soluble surfactant at high concentration, remarkably, we recover the symmetry (droplet size and effective viscosity) between O/W and W/O emulsions. Based on this, we suggest a possible mechanism responsible for the initial asymmetry and reach conclusions on emulsions where interfaces are fully covered by the surfactant. Next, we discuss what sets the droplet size in turbulent emulsions. We uncover a −6/5 scaling dependence of the droplet size on the Reynolds number of the flow. Combining the scaling dependence and the droplet Weber number, we conclude that the droplet fragmentation, which determines the droplet size, occurs within the boundary layer and is controlled by the dynamic pressure caused by the gradient of the mean flow, as proposed by Levich (Physicochemical Hydrodynamics, Prentice-Hall, 1962), instead of the dynamic pressure due to turbulent fluctuations, as proposed by Kolmogorov (Dokl. Akad. Nauk. SSSR, vol. 66, 1949, pp. 825–828). The present findings provide an understanding of both the microscopic droplet formation and the macroscopic rheological behaviours in dynamic emulsification, and connects them.

Originele taal-2Engels
ArtikelnummerA39
Aantal pagina's22
TijdschriftJournal of Fluid Mechanics
Volume951
DOI's
StatusGepubliceerd - 25 nov. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit