Physical background of the endurance limit in poly(ether ether ketone)

Leonid V. Pastukhov, Marc J. W. Kanters, Tom A.P. Engels, Leon E. Govaert (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)


In this study, it is demonstrated that the apparent endurance (fatigue) limit for plasticity‐controlled failure in poly(ether ether ketone) is related to an evolution of the yield stress. The increase of the yield stress has two separate causes: (a) stress‐ and temperature‐accelerated physical aging of the amorphous phase and (b) strain hardening as a result of texture development. Yield stress evolution is monitored using thermomechanical treatments during which the material is exposed to temperature and load. The combined contributions of both temperature and applied stress to yield stress evolution (below T g ) can be effectively modeled using an effective time approach employing an Arrhenius temperature‐activation as well as Eyring stress activation. Combination of the yield stress evolution with a previously developed model for plasticity‐controlled failure allows prediction of time‐to‐failure under both static and cyclic load, quantitatively capturing the observed apparent endurance limit.
Originele taal-2Engels
Pagina's (van-tot)716-736
Aantal pagina's21
TijdschriftJournal of Polymer Science
Nummer van het tijdschrift5
StatusGepubliceerd - 1 mrt 2020

Citeer dit