Phase transitions for scaling of structural correlations in directed networks

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

6 Citaten (Scopus)
35 Downloads (Pure)


Analysis of degree-degree dependencies in complex networks, and their impact on processes on networks requires null models, i.e., models that generate uncorrelated scale-free networks. Most models to date, however, show structural negative dependencies, caused by finite size effects. We analyze the behavior of these structural negative degree-degree dependencies, using rank based correlation measures, in the directed erased configuration model. We obtain expressions for the scaling as a function of the exponents of the distributions. Moreover, we show that this scaling undergoes a phase transition, where one region exhibits scaling related to the natural cutoff of the network while another region has scaling similar to the structural cutoff for uncorrelated networks. By establishing the speed of convergence of these structural dependencies we are able to assess statistical significance of degree-degree dependencies on finite complex networks when compared to networks generated by the directed erased configuration model.
Originele taal-2Engels
TijdschriftPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Nummer van het tijdschrift2
StatusGepubliceerd - 2015
Extern gepubliceerdJa


Duik in de onderzoeksthema's van 'Phase transitions for scaling of structural correlations in directed networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit