Perturbation bounds for root-clustering of linear systems in a specified second order subregion

W. Bakker, J.S. Luo, A. Johnson

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
92 Downloads (Pure)

Samenvatting

Sufficient bounds for structured and unstructured uncertainties for root-clustering in a specified second order subregion of the complex plane, for both continuous-time and discrete-time systems, are given using the generalized Lyapunov theory. Furthermore, for unstructured uncertainties, a still less conservative result is obtained by shifting the center or focus of the subregion along the real axis to the origin and by applying root-clustering to the "shifted eigenvalue" system matrix, which is obtained by shifting the eigenvalues of the system matrix correspondingly
Originele taal-2Engels
Pagina's (van-tot)473-478
Aantal pagina's6
TijdschriftIEEE Transactions on Automatic Control
Volume40
DOI's
StatusGepubliceerd - 1995

Vingerafdruk

Duik in de onderzoeksthema's van 'Perturbation bounds for root-clustering of linear systems in a specified second order subregion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit