Personalized recommendations for music genre exploration

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)

Samenvatting

Most recommender systems generate recommendations to match the user's current preference. However, users sometimes might have the goal to develop new preferences away from their current preference and use the recommender to guide them towards it. In this paper, we asked users to select a new genre to explore and studied what kind of recommendations would be more helpful for users to start exploring this new music taste. Three different recommendation methods are tested: one non-personalized which recommends the most representative tracks of the genre, one personalized method which considers songs from the new genre that best matches users' current preferences, and one mixed method which makes a trade-off between the two approaches. A comparative design was used in a user experiment in which participants were asked to evaluate the differences between the personalized method/mixed method and the non-personalized baseline. The mixed method results in recommendations that are more accurate and representative for the new genre than the personalized method. Users' perceived helpfulness for exploring the new genre is positively related to both perceived accuracy and perceived representativeness of the recommended items. Besides, recommendations from the mixed method are perceived more helpful for users high on Musical Sophistication Index for Active Engagement (MSAE). To our knowledge, this is one of the first studies using a recommender system to support users' preference development, and provides insights in how recommender systems can help users attain new goals and tastes.

Originele taal-2Engels
TitelACM UMAP 2019 - Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
Pagina's276-284
Aantal pagina's9
ISBN van elektronische versie978-1-4503-6021-0
DOI's
StatusGepubliceerd - 7 jun 2019
Evenement27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019 - Larnaca, Cyprus
Duur: 9 jun 201912 jun 2019

Congres

Congres27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2019
LandCyprus
StadLarnaca
Periode9/06/1912/06/19

Vingerafdruk Duik in de onderzoeksthema's van 'Personalized recommendations for music genre exploration'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Liang, Y., & Willemsen, M. C. (2019). Personalized recommendations for music genre exploration. In ACM UMAP 2019 - Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization (blz. 276-284). Association for Computing Machinery, Inc. https://doi.org/10.1145/3320435.3320455