Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge

Balázs Erdős (Corresponding author), Bart van Sloun, Michiel E. Adriaens, Shauna D. O'Donovan, Dominique Langin, Arne Astrup, Ellen E. Blaak, Ilja C.W. Arts, Natal A.W. van Riel

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

13 Citaties (SciVal)

Samenvatting

Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.

Originele taal-2Engels
Artikelnummere1008852
Aantal pagina's18
TijdschriftPLoS Computational Biology
Volume17
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 1 mrt. 2021

Bibliografische nota

Copyright:
This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine

Vingerafdruk

Duik in de onderzoeksthema's van 'Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge'. Samen vormen ze een unieke vingerafdruk.

Citeer dit