Performance-preserving event log sampling for predictive monitoring

Mohammadreza Fani Sani (Corresponding author), Mozhgan Vazifehdoostirani, Gyunam Park, Marco Pegoraro, S.J. (Bas) van Zelst, Wil M.P. van der Aalst

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
40 Downloads (Pure)

Samenvatting

Predictive process monitoring is a subfield of process mining that aims to estimate case or event features for running process instances. Such predictions are of significant interest to the process stakeholders. However, most of the state-of-the-art methods for predictive monitoring require the training of complex machine learning models, which is often inefficient. Moreover, most of these methods require a hyper-parameter optimization that requires several repetitions of the training process which is not feasible in many real-life applications. In this paper, we propose an instance selection procedure that allows sampling training process instances for prediction models. We show that our instance selection procedure allows for a significant increase of training speed for next activity and remaining time prediction methods while maintaining reliable levels of prediction accuracy.
Originele taal-2Engels
Pagina's (van-tot)53-82
Aantal pagina's30
TijdschriftJournal of Intelligent Information Systems
Volume61
Nummer van het tijdschrift1
Vroegere onlinedatum6 mrt. 2023
DOI's
StatusGepubliceerd - aug. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Performance-preserving event log sampling for predictive monitoring'. Samen vormen ze een unieke vingerafdruk.

Citeer dit