PDE-CNNs: Axiomatic Derivations and Applications

Gijs Bellaard (Corresponding author), Sei Sakata, Bart M.N. Smets, Remco Duits

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)

Samenvatting

PDE-based group convolutional neural networks (PDE-G-CNNs) use solvers of evolution PDEs as substitutes for the conventional components in G-CNNs. PDE-G-CNNs can offer several benefits simultaneously: fewer parameters, inherent equivariance, better accuracy, and data efficiency. In this article, we focus on Euclidean equivariant PDE-G-CNNs where the feature maps are two-dimensional throughout. We call this variant of the framework a PDE-CNN. From a machine learning perspective, we list several practically desirable axioms and derive from these which PDEs should be used in a PDE-CNN, this being our main contribution. Our approach to geometric learning via PDEs is inspired by the axioms of scale-space theory, which we generalize by introducing semifield-valued signals. Our theory reveals new PDEs that can be used in PDE-CNNs and we experimentally examine what impact these have on the accuracy of PDE-CNNs. We also confirm for small networks that PDE-CNNs offer fewer parameters, increased accuracy, and better data efficiency when compared to CNNs.

Originele taal-2Engels
Artikelnummer13
Aantal pagina's25
TijdschriftJournal of Mathematical Imaging and Vision
Volume67
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - apr. 2025

Bibliografische nota

Publisher Copyright:
© The Author(s) 2025.

Vingerafdruk

Duik in de onderzoeksthema's van 'PDE-CNNs: Axiomatic Derivations and Applications'. Samen vormen ze een unieke vingerafdruk.

Citeer dit