Onderzoeksoutput per jaar
Onderzoeksoutput per jaar
K. Rogov, A. Pogromsky, E. Steur, W. Michiels, H. Nijmeijer
Onderzoeksoutput: Bijdrage aan tijdschrift › Congresartikel › peer review
In this paper, we present a method aiming at pattern prediction in networks of diffusively coupled nonlinear systems. Interconnecting several globally asymptotical stable systems into a network via diffusion can result in diffusion-driven instability phenomena, which may lead to pattern formation in coupled systems. Some of the patterns may co-exist which implies the multi-stability of the network. Multi-stability makes the application of common analysis methods, such as the direct Lyapunov method, highly involved. We develop a numerically efficient method in order to analyze the oscillatory behavior occurring in such networks. We show that the oscillations appear via a Hopf bifurcation and therefore display sinusoidal-like behavior in the neighborhood of the bifurcation point. This allows to use the describing function method in order to replace a nonlinearity by its linear approximation and then to analyze the system of linear equations by means of the multivariable harmonic balance method. The method cannot be directly applied to a network consisting of systems of any structure and here we present the multivariable harmonic balance method for networks with a general system's structure and dynamics.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 62-67 |
Aantal pagina's | 6 |
Tijdschrift | IFAC-PapersOnLine |
Volume | 51 |
Nummer van het tijdschrift | 33 |
DOI's | |
Status | Gepubliceerd - 2018 |
Evenement | 5th IFAC Conference on Analysis and Control of Chaotic Systems (IFAC CHAOS 2018) - Eindhoven, Nederland Duur: 30 okt. 2018 → 1 nov. 2018 https://chaos2018.dc.wtb.tue.nl/ |
Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review