Pattern Analysis in Networks of Delayed Coupled Nonlinear Systems

K. Rogov, A. Pogromsky, E. Steur, W. Michiels, H. Nijmeijer

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper, a method for pattern analysis in networks of nonlinear systems of Lur'e type interconnected via time-delayed coupling functions is presented. We consider a class of nonlinear systems which are globally asymptotically stable in isolation. Interconnecting such systems into a network via time-delayed coupling can result in persistent oscillatory behavior, which may lead to pattern formation in the delay-coupled systems. We focus on networks of Lur'e systems in which a Hopf bifurcation causes the instability of the network equilibrium. We develop a numerically efficient method in order to analyze the oscillatory behavior occurring in such networks. Our analysis is based on the harmonic balance method and tested on the network of delay coupled FitzHugh-Nagumo (FHN) model neurons.

Originele taal-2Engels
Titel2020 European Control Conference (ECC)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1468-1473
Aantal pagina's6
ISBN van elektronische versie978-3-90714-402-2
DOI's
StatusGepubliceerd - 20 jul. 2020
Evenement2020 European Control Conference, ECC 2020 - Saint Petersburg, Rusland
Duur: 12 mei 202015 mei 2020

Congres

Congres2020 European Control Conference, ECC 2020
Verkorte titelECC 2020
Land/RegioRusland
StadSaint Petersburg
Periode12/05/2015/05/20

Financiering

This paper was elaborated in the UCoCoS project which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675080.

FinanciersFinanciernummer
H2020 Marie Skłodowska-Curie Actions
European Union’s Horizon Europe research and innovation programme
H2020 Marie Skłodowska-Curie Actions675080
Horizon 2020

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Pattern Analysis in Networks of Delayed Coupled Nonlinear Systems'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit