Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies

Federica Eduati, Patricia Jaaks, Jessica Wappler, Thorsten Cramer, Christoph A Merten, Mathew J Garnett, Julio Saez-Rodriguez (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

47 Citaten (Scopus)
196 Downloads (Pure)

Samenvatting

Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating such models for patients, in particular for solid malignancies, is challenging. A major hurdle to build these models is the limited material available that precludes the generation of large-scale perturbation data. Here, we present an approach that couples ex vivo high-throughput screenings of cancer biopsies using microfluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We used the resulting models to investigate heterogeneity in pancreatic cancer patients, showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters reflected well the different tumor stages. Finally, we used our dynamic models to efficaciously predict new personalized combinatorial treatments. Our results suggest that our combination of microfluidic experiments and mathematical model can be a novel tool toward cancer precision medicine.

Originele taal-2Engels
Artikelnummere8664
Aantal pagina's13
TijdschriftMolecular Systems Biology
Volume16
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - feb. 2020

Bibliografische nota

© 2020 The Authors. Published under the terms of the CC BY 4.0 license.

Vingerafdruk

Duik in de onderzoeksthema's van 'Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies'. Samen vormen ze een unieke vingerafdruk.

Citeer dit