Samenvatting
Here, we report an anomalous pathway complexity in the supramolecular polymerization of a chiral monomer, which displays an unusual chiroptical feature that does not follow any of the known stereochemical rules such as “chiral self-sorting” and “majority rule”. We newly developed a planar-chiral ferrocene-cored tetratopic pyridyl monomer FcL, which underwent AgBF4-mediated supramolecular polymerization to give nanotubes FcNTs composed of metal-organic nanorings FcNRs. Although FcNRs must be homochiral because of a strong geometrical constraint, FcNRs were formed even efficiently from racemic FcL and AgBF4. Detailed studies revealed the presence of two competing pathways for producing homochiral FcNRs as the constituents of FcNTs: (i) spontaneous cyclization of initially formed acyclic polymers -[FcL-Ag+]n- and (ii) template (FcNR)-assisted cyclization via a Ag+···Ag+ metallophilic interaction. The dominance of the two pathways changes depending on the %ee of chiral FcL. Namely, when the %ee of FcL is high, -[FcL-Ag+]n- must contain sufficiently long homochiral sequences that can be readily cyclized into FcNRs. Meanwhile, when the %ee of FcL is low, the homochiral sequences in -[FcL-Ag+]n- must be short and therefore are hardly eligible for spontaneous cyclization. Why were FcNRs formed? Even though the probability is very low, homochiral -[FcL-Ag+]n- can be statistically generated and undergo spontaneous cyclization to give FcNRs minutely. We found that FcNRs can be amplified by heterochirally templating their own synthesis using metallophilic interaction. Because of this stereochemical preference, the growth of FcNRs into FcNTs via the template-assisted mechanism occurs only when both (R,R)FcL and (S,S)FcL are present in the polymerization system.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 13920-13928 |
Aantal pagina's | 9 |
Tijdschrift | Journal of the American Chemical Society |
Volume | 145 |
Nummer van het tijdschrift | 25 |
DOI's | |
Status | Gepubliceerd - 28 jun. 2023 |
Bibliografische nota
Publisher Copyright:© 2023 American Chemical Society
Financiering
This work was financially supported by a JSPS Grant-in-Aid for Specially Promoted Research (23H05408) for T.A. Y.Z. thanks the support from SPRING-GX Project from JST SPRING, Grant Number JPMJSP2108. The 2D XRD was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2020P002). The SAXS was performed on BL38B1 at the Super Photon Ring (SPring-8) with the approval of RIKEN (Proposal No. 20210015). We thank Dr. Ailong Li for his kind support on the linear scan voltammetry analysis. We also thank Dr. Nobutaka Shimizu, Dr. Hiroshi Sato, Dr. Shun Suginome, Dr. Tsubasa Aoki, Dr. Zebin Su, and Mr. Shuo Chen for fruitful discussion. We also thank Mr. Kiyoshi Morishita for English proofreading.