Onderzoeksoutput per jaar
Onderzoeksoutput per jaar
Paul M.J. Van Den Hof, Karthik R. Ramaswamy
Onderzoeksoutput: Hoofdstuk in Boek/Rapport/Congresprocedure › Conferentiebijdrage › Academic › peer review
For consistent or minimum variance estimation of a single module in a dynamic network, a predictor model has to be chosen with selected inputs and outputs, composed of a selection of measured node signals and possibly external excitation signals. The predictor model has to be chosen in such a way that consistent estimation of the target module is possible, under the condition that we have data-informativity for the considered predictor model set. Consistent and minimum variance estimation of target modules is typically obtained if we follow a direct method of identification and predictor model selection, characterized by the property that measured node signals are the prime predictor input signals. In this paper the concept of data-informativity for network models will be formalized, and for the direct method the required data-informativity conditions will be specified in terms of path-based conditions on the graph of the network model, guaranteeing data-informativity in a generic sense, i.e. independent on numerical values of the network transfer functions concerned.
Originele taal-2 | Engels |
---|---|
Titel | 59th IEEE Conference on Decision and Control (CDC 2020) |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 4354-4359 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-7281-7447-1 |
DOI's | |
Status | Gepubliceerd - 11 jan. 2021 |
Evenement | 2020 59th IEEE Conference on Decision and Control (CDC) - Virtual/Online, Virtual, Jeju Island, Zuid-Korea Duur: 14 dec. 2020 → 18 dec. 2020 Congresnummer: 59 https://cdc2020.ieeecss.org/ |
Congres | 2020 59th IEEE Conference on Decision and Control (CDC) |
---|---|
Verkorte titel | CDC |
Land/Regio | Zuid-Korea |
Stad | Virtual, Jeju Island |
Periode | 14/12/20 → 18/12/20 |
Internet adres |
Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review