Parametric model order reduction for large-scale and complex thermal systems

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
4 Downloads (Pure)


In this paper, a parametric model order reduction (pMOR) technique is proposed to find a simplified system representation of a large-scale and complex thermal system. The main principle behind this technique is that any change of the physical parameters in the high-fidelity model can be updated directly in the simplified model. For deriving the parametric reduced model, a Krylov subspace method is employed which yields the relevant subspaces of the projected state. With the help of the projection operator, first moments of the low-rank model are set identical to the correspondent moments of the original model. Additionally, a prior upper bound of the error induced by the approximation is derived.
Originele taal-2Engels
Titel2018 European Control Conference (ECC)
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
ISBN van elektronische versie978-3-9524-2698-2
StatusGepubliceerd - 27 nov 2018
Evenement16th European Control Conference (ECC 2018) - Limassol, Cyprus
Duur: 12 jun 201815 jun 2018
Congresnummer: 16


Congres16th European Control Conference (ECC 2018)
Verkorte titelECC 2018


Duik in de onderzoeksthema's van 'Parametric model order reduction for large-scale and complex thermal systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit