Parametric fault identification and dynamic compensation techniques for cellular neural network hardware

M.R. Grimaila, J. Pineda de Gyvez

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    114 Downloads (Pure)

    Samenvatting

    Testing strategies to quantify parametric faults in a fully programmable, two-dimensional cellular neural network (CNN) are presented. The approach is intended to quantify system offsets, time constant mismatches, nonlinearities in the multipliers and state nodes, and the magnitude of the dynamic range of operation which can lead to misconvergence in the CNN array. For some cases, the authors present dynamic solutions by compensating the templates, the input data, and/or the initial condition values to minimise or cancel the undesired effects. The proposed dynamic compensation techniques can be applied to any CNN independent of the array size or topology. To demonstrate the feasibility of the proposed techniques, the authors examine their application to an actual complex VLSI CNN implementation
    Originele taal-2Engels
    Pagina's (van-tot)295-301
    Aantal pagina's7
    TijdschriftIEE Proceedings - Circuits, Devices and Systems
    Volume143
    Nummer van het tijdschrift5
    DOI's
    StatusGepubliceerd - 1996

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Parametric fault identification and dynamic compensation techniques for cellular neural network hardware'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit