Parameter-Varying Feedforward Control: A Kernel-Based Learning Approach

Max van Haren (Corresponding author), Lennart Blanken, Tom Oomen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Downloads (Pure)

Samenvatting

The increasing demands for high accuracy in mechatronic systems necessitate the incorporation of parameter variations in feedforward control. The aim of this paper is to develop a data-driven approach for direct learning of parameter-varying feedforward control to increase tracking performance. The developed approach is based on kernel-regularized function estimation in conjunction with iterative learning to directly learn parameter-varying feedforward control from data. This approach enables high tracking performance for feedforward control of linear parameter-varying dynamics, providing flexibility to varying reference tasks. The developed framework is validated on a benchmark industrial experimental setup featuring a belt-driven carriage.
Originele taal-2Engels
Artikelnummer103337
Aantal pagina's9
TijdschriftMechatronics
Volume109
DOI's
StatusGepubliceerd - aug. 2025

Financiering

This work is part of the research programme VIDI with project number 15698, which is (partly) financed by, The Netherlands Organisation for Scientific Research (NWO) . This research has received funding from the ECSEL Joint Undertaking under grant agreement 101007311 (IMOCO4.E). The Joint Undertaking receives support from the European Union Horizon 2020 research and innovation programme .

Trefwoorden

  • eess.SY
  • cs.SY

Vingerafdruk

Duik in de onderzoeksthema's van 'Parameter-Varying Feedforward Control: A Kernel-Based Learning Approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit