Parameter estimation of social forces in crowd dynamics models via a probabilistic method

A. Corbetta, A. Muntean, F. Toschi, K. Vafayi

Onderzoeksoutput: Boek/rapportRapportAcademic

97 Downloads (Pure)

Samenvatting

Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique. Keywords: Crowd dynamics, parameter estimation, Bayes theorem, models classification, data analysis.
Originele taal-2Engels
Plaats van productieEindhoven
UitgeverijTechnische Universiteit Eindhoven
Aantal pagina's20
StatusGepubliceerd - 2014

Publicatie series

NaamCASA-report
Volume1408
ISSN van geprinte versie0926-4507

Vingerafdruk

Duik in de onderzoeksthema's van 'Parameter estimation of social forces in crowd dynamics models via a probabilistic method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit