Pairing-friendly twisted Hessian curves

Chitchanok Chuengsatiansup, C.R. Martindale

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

This paper presents efficient formulas to compute Miller doubling and Miller addition utilizing degree-3 twists on curves with j-invariant 0 written in Hessian form. We give the formulas for both odd and even embedding degrees and for pairings on both G 1 × G 2 and G 2 × G 1 . We propose the use of embedding degrees 15 and 21 for 128-bit and 192-bit security respectively in light of the NFS attacks and their variants. We give a comprehensive comparison with other curve models; our formulas give the fastest known pairing computation for embedding degrees 15, 21, and 24.

Originele taal-2Engels
TitelProgress in Cryptology - INDOCRYPT 2018
SubtitelAsymmetic Key Cryptography and Cryptanalysis
RedacteurenDebrup Chakraborty, Tetsu Iwata
Plaats van productieBerlin
UitgeverijSpringer
Pagina's228-247
Aantal pagina's20
ISBN van elektronische versie978-3-030-05378-9
ISBN van geprinte versie978-3-030-05377-2
DOI's
StatusGepubliceerd - 2018

Publicatie series

NaamLecture Notes in Computer Science
Volume11356

Vingerafdruk Duik in de onderzoeksthema's van 'Pairing-friendly twisted Hessian curves'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Chuengsatiansup, C., & Martindale, C. R. (2018). Pairing-friendly twisted Hessian curves. In D. Chakraborty, & T. Iwata (editors), Progress in Cryptology - INDOCRYPT 2018: Asymmetic Key Cryptography and Cryptanalysis (blz. 228-247). (Lecture Notes in Computer Science; Vol. 11356). Springer. https://doi.org/10.1007/978-3-030-05378-9_13