Overview of efficient clustering methods for high-dimensional big data streams

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

2 Downloads (Pure)

Samenvatting

The majority of clustering approaches focused on static data. However, a big variety of recent applications and research issues in big data mining require dealing with continuous, possibly infinite streams of data, arriving at high velocity. Web traffic data, surveillance data, sensor measurements, and stock trading are only some examples of these daily-increasing applications. Additionally, as the growth of data volumes is accompanied by a similar expansion in their dimensionalities, clusters cannot be expected to completely appear when considering all attributes together. Subspace clustering is a general approach that solved that issue by automatically finding the hidden clusters within different subsets of the attributes rather than considering all attributes together. In this chapter, novel methods for an efficient subspace clustering of high-dimensional big data streams are presented. Approaches that efficiently combine the anytime clustering concept with the stream subspace clustering paradigm are discussed. Additionally, efficient and adaptive density-based clustering algorithms are presented for high-dimensional data streams. Novel open-source assessment framework and evaluation measures are additionally presented for subspace stream clustering.
Originele taal-2Engels
TitelClustering Methods for Big Data Analytics
RedacteurenOlfa Nasraoui, Chiheb-Eddine Ben N'Cir
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk2
Pagina's25-42
Aantal pagina's18
ISBN van elektronische versie978-3-319-97864-2
ISBN van geprinte versie978-3-319-97863-5
DOI's
StatusGepubliceerd - 1 jan. 2019

Publicatie series

NaamUnsupervised and Semi-Supervised Learning
UitgeverijSpringer
ISSN van geprinte versie2522-848X

Vingerafdruk

Duik in de onderzoeksthema's van 'Overview of efficient clustering methods for high-dimensional big data streams'. Samen vormen ze een unieke vingerafdruk.

Citeer dit