Outlier identification rules for generalized linear models

S. Kuhnt, J. Pawlitschko

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


    Observations which seem to deviate strongly from the main part of the data may occur in every statistical analysis. These observations, usually labelled as outliers, may cause completely misleading results when using standard methods and may also contain information about special events or dependencies. We discuss outliers in situations where a generalized linear model is assumed as null model for the regular data and introduce rules for their identification. For the special cases of a loglinear Poisson model and a logistic regression model some one-step identifiers based on robust and non-robust estimators are proposed and compared.
    Originele taal-2Engels
    TitelInnovations in Classification, Data Science, and Information Systems (Proceedings of the 27th Annual Conference of the Gesellschaft für Klassifikation e.V., Cottbus, Germany, March 12–14, 2003), Part II
    RedacteurenD. Baier, K.D. Warnecke
    Plaats van productieBerlin
    Aantal pagina's8
    ISBN van elektronische versie978-3-540-26981-6
    ISBN van geprinte versie3-540-23221-4, 978-3-540-23221-6
    StatusGepubliceerd - 2005

    Publicatie series

    NaamStudies in Classification, Data Analysis, and Knowledge Organization


    Duik in de onderzoeksthema's van 'Outlier identification rules for generalized linear models'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit