Out-of-Distribution Generalisation with Symmetry-Based Disentangled Representations

Loek M.A. Tonnaer (Corresponderende auteur), Mike J. Holenderski, V. Menkovski

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Learning disentangled representations is suggested to help with generalisation in AI models. This is particularly obvious for combinatorial generalisation, the ability to combine familiar factors to produce new unseen combinations. Disentangling such factors should provide a clear method to generalise to novel combinations, but recent empirical studies suggest that this does not really happen in practice. Disentanglement methods typically assume i.i.d. training and test data, but for combinatorial generalisation we want to generalise towards factor combinations that can be considered out-of-distribution (OOD). There is a misalignment between the distribution of the observed data and the structure that is induced by the underlying factors.

A promising direction to address this misalignment is symmetry-based disentanglement, which is defined as disentangling symmetry transformations that induce a group structure underlying the data. Such a structure is independent of the (observed) distribution of the data and thus provides a sensible language to model OOD factor combinations as well. We investigate the combinatorial generalisation capabilities of a symmetry-based disentanglement model (LSBD-VAE) compared to traditional VAE-based disentanglement models. We observe that both types of models struggle with generalisation in more challenging settings, and that symmetry-based disentanglement appears to show no obvious improvement over traditional disentanglement. However, we also observe that even if LSBD-VAE assigns low likelihood to OOD combinations, the encoder may still generalise well by learning a meaningful mapping reflecting the underlying group structure.
Originele taal-2Engels
TitelAdvances in Intelligent Data Analysis XXI
Subtitel21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings
RedacteurenBruno Crémilleux, Sibylle Hess, Siegfried Nijssen
Plaats van productieCham
UitgeverijSpringer
Pagina's433-445
Aantal pagina's13
ISBN van elektronische versie978-3-031-30047-9
ISBN van geprinte versie978-3-031-30046-2
DOI's
StatusGepubliceerd - 1 apr. 2023
Evenement21st International Symposium on Intelligent Data Analysis - Louvain-la-Neuve, België
Duur: 12 apr. 202314 apr. 2023
https://ida2023.org

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume13876
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres21st International Symposium on Intelligent Data Analysis
Verkorte titelIDA 2023
Land/RegioBelgië
StadLouvain-la-Neuve
Periode12/04/2314/04/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Out-of-Distribution Generalisation with Symmetry-Based Disentangled Representations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit